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Abstract
The problem of the propagation of surface waves over deep water is considered.
We present a rigorous approach towards the only known (non-trivial) explicit
solution to the governing equations for water waves—Gerstner’s wave. Some
properties of this solution, and how these relate to some basic conclusions about
water waves that may be observed experimentally, are discussed.

PACS numbers: 9210, 4735, 0230, 0240

1. Introduction

When one watches the sea from the shore it is possible to trace a wave as it comes in from
the open sea. It seems that at every instant one is looking at a quite different piece of water.
This is not so: what one can observe travelling across the sea to the shore is not the water,
it is a shape, a pattern that may become more marked or may fade out and disappear. It has
been well confirmed by experiment that, as a surface wave passes over deep water, the surface
water particles trace roughly circular orbits with a diameter equal to the height of the wave
(see figure 1). As the wave crest approaches, the surface water particles rise with respect to
the still-water level and move forward, while when the crest passes, the particles begin to fall.
With the advancement of the trough, the particles slow their falling rate and move backward,
while at the bottom of the trough they move only backward. As the trough passes, the particles
start to rise again. Below the surface the diameter decreases and orbital motion practically
ceases if the depth exceeds half a wavelength (see figure 2).

It is this orbital motion of the surface water particles that causes a floating object to move
up and down, forward and backward, as the waves pass under it. The fact that the wave motion

Figure 1. The orbits of surface particles in a deep water wave. The particles move from • to �
as the wave moves from the full curve to the broken curve.
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Figure 2. Clockwise orbital motion in circles (deep water).

fades out with increasing depth is used by submarines that dive deeply during storms in the
open sea. Also, designers of floating structures such as semi-submersible rigs used for oil
drilling set the buoyant parts at great depth, so that the structure is not appreciably affected by
surface waves.

A suitable description of deep water waves is obtained by assuming the water to be
(theoretically) infinitely deep, the water body being the region of R

3 bounded above by the
free surface z = h(t, x, y). Let u = (u, v,w) be the velocity field and let us recall the general
problem for the propagation of gravity waves in deep water cf [3]. Homogeneity (constant
density ρ) is a good approximation for water, cf [2], so that we have the equation of mass
conservation in the form1

ux + vy + wz = 0. (1.1)

On the other hand, under the assumption that water is inviscid, the equation of motion is Euler’s
equation (see [5])

Du

Dt
= − 1

ρ
Px

Dv

Dt
= − 1

ρ
Py

Dw

Dt
= − 1

ρ
Pz − g.

(1.2)

where P(t, x, y, z) denotes the pressure, g is the gravitational acceleration constant and D/Dt
is the material time derivative, Df

Dt = ∂f

∂t
+ u∂f

∂x
+ v ∂f

∂y
+ w∂f

∂z
, expressing the rate of change

of the quantity f associated with the same fluid particle as it moves about. The continuity
equation (1.1) and Euler’s equation (1.2) are the exact equations of motion for the velocity
field. Let us now present the boundary conditions which select the water-wave problem from
all other possible solutions of equations (1.1) and (1.2). The dynamic boundary condition

P = P0 on z = h(t, x, y) (1.3)

where P0 is the constant atmospheric pressure, decouples the motion of the air from that of
the water. The kinematic boundary condition is

w = ht + uhx + vhy on z = h(t, x, y) (1.4)

expressing the fact that the same particles always form the free water surface, i.e. D
Dt (z−h) = 0.

The boundary condition at the bottom

u → 0 as z → −∞ (1.5)
1 We recognize in (1.1) the condition of incompressibility: in general, a fluid moving with velocity u is being
compressed at the rate ∇ · u and for this reason our velocity field is divergence free.
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expresses the fact that at great depths there is practically no motion. The general description
of the propagation of a wave over deep water is encompassed by equations (1.1)–(1.5). A
distinctive feature is that the free surface is not known and must be determined as part of the
solution.

There is no rigorous theory so far yielding an explanation of the aspects of water waves that
have been uncovered within the context of approximate theories but there has been significant
recent progress [1, 6, 8]. Most basic results on the dynamics of water waves have been obtained
by perturbation schemes used to replace the governing equations by approximate models that
have been used extensively to make a variety of theoretical studies, which have been confirmed
in experimental contexts. The rigorous justification of these approximations is conceptually
and technically difficult, but the lack of deductive rigour can lead to the fallability of the
physically plausible arguments. In particular, the existing linear approximate theory (see [3])
explaining the described motion of the deep water particles as a wave passes is still essentially
tentative. The same linear approximation shows that the propagation velocity of a deep water
wave depends on the wavelength—deep water waves are dispersive.

This paper is devoted to the only known explicit solution to the governing equations (1.1)–
(1.5), whose existence was pointed out by Gerstner in 1802 (cf [4]). Using an interplay of
topological and analytical ideas we show rigorously that Gerstner’s calculations can be justified
in a satisfactory mathematical manner. To the best of our knowledge, a rigorous analysis of
Gerstner’s wave has not previously been given. The final section gives a brief description of how
Gerstner’s wave reflects the conclusions regarding the dispersive character of the waves and
the motion of the particles in deep water, providing a background against which the predictions
of the approximate linear theory can be checked. We would like to point out that Gerstner’s
wave does not belong to the class of Stokes waves (see [6] for a self-contained analysis of
the rigorous theory for this type of waves) as the water motion induced by it is rotational, in
contrast to the irrotational character of a Stokes wave—note also that no representation of a
Stokes wave by a mathematical expression of closed form is known cf [6].

2. Gerstner’s wave

Let us first present the main ideas behind Gerstner’s construction. Gerstner’s wave is a two-
dimensional wave—the motion is identical in all planes parallel to a representative fixed vertical
plane (a particle in such a plane will stay forever in it). It is therefore sufficient to consider the
motion of the water particles in the fixed plane, say the (x, z)-plane, with velocity u, pressure
P and free surface h all not dependent on the y-variable. The analysis is considerably more
transparent if we adopt the Lagrangian point of view by following the evolution of individual
water particles.

Let a and b be parameters which fix the position of a particular water particle before the
passage of a wave—with a ∈ R and b � b0 for some b0 � 0 fixed2 the lower half-plane
represents the still water body. Gerstner’s wave is obtained by supposing that the position of
this particular particle at time t is given by

x = a +
emb

m
sinm

(
a +

√
g

m
t

)

z = b − emb

m
cosm

(
a +

√
g

m
t

) (2.1)

where m > 0 is fixed. If the still water surface was {(a, b0) : a ∈ R} with b0 < 0, then

2 As we will see, the restriction to negative values is essential.
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Figure 3. Profiles of the surface wave (thick full curve) and the original still water surface (thick
dotted line).

the profile of the surface wave would be a smooth curve obtained by setting b = b0 in (2.1);
this curve is called a trochoid. The extreme case of the still water surface at {(a, 0) : a ∈ R}
leads to a surface wave having the profile of a cycloid—a continuous curve with upward
cusps (see figure 3). We would like to point out that the still water surface is used just as
a convenient reference—Gerstner’s wave is not developing from this state of the water body
(otherwise, cf [5], the flow would be irrotational and we shall see that actually its vorticity is
non-zero).

Relation (2.1) shows that the presumed path of a particle is the circle centred at (a, b) and
whose radius is emb/m, the angular velocity with which the particle moves counterclockwise
being

√
g/m. If we consider the motion of another particle we merely change the values of a

and b in (2.1). It is implied that the creation of the wave produces a drift (moving the particle
from the centre of the circle to a location on the circumference of the circle (see figure 4))
but, once the wave is created, as an effect of its passage the particle will move clockwise in a
circular orbit—the direction of propagation of the surface wave being (in the adopted reference
system) from right to left.

In order to show that (2.1) provides a solution to the governing equations, we have to
prove that it defines a motion of the whole fluid body for which the equation of continuity

Figure 4. Path of a particle located in still water at the centre.
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(1.1) holds, that a suitable pressure verifies Euler’s equation and the boundary condition (1.3),
a last point being that a particle on the free surface stays on the free surface—this would take
care of the boundary condition (1.4)—and that the condition (1.5) at the bottom is verified.
The delicate point is to show that it is possible to have a motion of the whole fluid body where
all particles describe circles with a depth-dependant radius. For the other issues we mainly
clarify and expand upon the discussion in [4].

Step 1. The map (2.1) defines for t � 0 a motion of the water body located while still below
the horizontal line {(a, b0) : a ∈ R} for some b0 � 0. That is, for every fixed t � 0, the map
(2.1) defines a diffeomorphism from the domain below {(a, b0) : a ∈ R} in the (x, z)-plane to
the domain below the surface wave z = h(t, x). The profile of the surface wave is smooth if
b0 < 0, while if b0 = 0 we have a continuous, piecewise smooth curve with upward cusps.

First of all, we may assume that t = 0 since the general case can be deduced from this
particular situation by conjugation: changing variables (a, b) �→ (a + t

√
g/m, b), performing

the transformation (2.1) with t = 0, and then simply shifting the horizontal variable by an
amount t

√
g/m. That is, it suffices to analyse the map

x = a +
emb

m
sinma

z = b − emb

m
cosma.

(2.2)

Keeping b fixed, the values of z in (2.2) recur when a is increased by 2π/m, while the values of
x undergo a linear shift of amount 2π/m. For this reason, it is enough to restrict our attention
to a ∈ [0, 2π/m].

Let us start by analysing the image under (2.2) of the horizontal line {(a, b) : a ∈ R} with
b � b0. We visualize the image as the graph of a function expressing the horizontal coordinate
in terms of the vertical coordinate: from the second component of (2.2) we find a as a function
of b and z. For fixed b and a ∈ [0, π/m] we obtain

z �→ 1

m
arccos

[
m(b − z)

emb

]
+

emb

m

√
1 − m2

e2mb
(b − z)2

z ∈
[
b − emb

m
, b +

emb

m

]
while for a ∈ [π/m, 2π/m] we obtain

z �→ 2π

m
− 1

m
arccos

[
m(b − z)

emb

]
− emb

m

√
1 − m2

e2mb
(b − z)2

z ∈
[
b − emb

m
, b +

emb

m

]
.

We see now that if b < 0, then the image of the line z = b is a smooth curve, with the
z-values recurring when a is increased by 2π/m. The profile of the restriction of this curve to
a ∈ [0, 2π/m] is rising on [0, π/m] from (0, b− emb/m) to reach its peak (π/m, b + emb/m)
and then it is descending for a ∈ [π/m, 2π/m] towards its lowest point at (2π/m, b−emb/m)
(see figure 5).

If b = 0, the situation is changing, as the two restrictions, to the intervals [0, π/m] and
[π/m, 2π/m] respectively, have the derivative zero for z → 1. In this case the image of the
line {(a, 0) : a ∈ R} is a continuous, piecewise smooth curve with sharp peaks at the points
((2k + 1)π/m, 1), k ∈ Z.
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Figure 5.

It is useful to note that for k ∈ Z, the vertical half-lines {(2kπ/m, b) : b � b0} and
{((2k + 1)π/m, b) : b � b0} are mapped by (2.2) into {(2kπ/m, z) : z � b0 − emb0/m},
respectively {((2k + 1)π/m, z) : z � b0 + emb0/m}. This is a consequence of the fact that both
functions s �→ s − ems/m, s �→ s + ems/m are increasing on (−∞, 0].

The differential of (2.2) at a fixed point (a, b) with b < 0 is given by the 2 × 2 matrix(
1 + emb cosma emb sinma

emb sinma 1 − emb cosma

)

of determinant 1 − e2mb > 0, so that from the inverse function theorem we infer that (2.2)
is a local diffeomorphism from U = {(a, b) : b < 0} onto its image W . We want to prove
that W is precisely the part of the (x, z)-plane below the cycloid and that (2.2) is a global
diffeomorphism from U to W .

To prove that (2.2) is injective on U it is convenient to introduce ξ = (x, z) ∈ R
2 and

rewrite (2.2) in the form of an application F(ξ) = ξ + f (ξ). If | · | is the Eulidean norm of R
2,

|(x, z)| = √
x2 + z2, we have that

|F(ξ2)− F(ξ1)| � |ξ2 − ξ1| − |f (ξ2)− f (ξ1)|
� |ξ2 − ξ1| − max

s∈[0,1]
{‖Dfsξ1+(1−s)ξ2‖} |ξ2 − ξ1|

by the mean-value theorem. However,

Df(a,b) = emb
(

cosma sinma

sinma − cosma

)

so that

‖Df(a,b)‖ = max
θ∈[0,2π ]

|Df(a,b)(cos θ, sin θ)| = max
θ∈[0,2π ]

emb
∣∣(cos(ma − θ), sin(ma − θ)

)∣∣ = emb

and therefore

|F(ξ2)− F(ξ1)| � (1 − emb)|ξ2 − ξ1| b = max{b1, b2}
for all ξ1 = (a1, b1), ξ2 = (a2, b2) in U . The fact that F is one-to-one on U is now plain.
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Figure 6.

Let us now show that W is the domain below the cycloid. Since F(a + 2π/m, b) =
F(a, b)+(2π/m, 0) it is enough to show that the intersection of W with the strip 0 � x � 2π/m
is the part of the strip which lies below the cycloid. Let ε > 0, L > 0 and consider the image
WL
ε under F of the set UL

ε = {(a, b) : a ∈ [0, 2π/m],−L < b < −ε}. The image of
the boundary ∂UL

ε is known from our previous considerations. It consists of the two vertical
segments {(0, z) : −L− e−mL/m < z < −ε− e−mε/m} and {(2π/m, z) : −L− e−mL/m <

z < −ε−e−mε/m}, together with the restriction to the strip a ∈ [0, 2π/m] of the two trochoids
{(a + e−mε

m
sinma,−ε− e−mε

m
cosma)}, respectively {(a + e−mL

m
sinma,−L− e−mL

m
cosma)} (see

figure 6). Observe also that the segment {(π/m, b) : −L < b < −ε} is transformed by F
into the segment {(π/m, b) : −L + e−mL/m < b < −ε + e−mε/m}. This shows that there
exist points A0 in the interior of UL

ε that are mapped in the open bounded set surrounded by
F(∂UL

ε ). From here we obtain at once that WL
ε is contained in the compact set surrounded by

F(∂UL
ε ). Indeed, if a point A of the interior of UL

ε is such that F(A) does not belong to the
open bounded set surrounded by F(∂UL

ε ), then the curve s �→ F(sA0 + (1 − s)A), s ∈ [0, 1],
will have to cross F(∂UL

ε ) as it connects two points on different sides of this closed curve (see
figure 7). However, an intersection point would be the image under F of two points in U :
one is on the boundary ∂UL

ε and the other one is in the interior of UL
ε , lying on the segment

{sA0 + (1 − s)A, s ∈ [0, 1]}. This contradicts the injectivity of the mapping F on U . We have
proved that WL

ε is contained in the compact set surrounded by F(∂UL
ε ).

The image of the compact set UL
ε (the closure of UL

ε ) under F is a compact set. We claim
now that it is precisely the closure of the bounded open set surrounded by F(∂UL

ε ). If not, as
∂UL

ε is mapped into F(∂UL
ε ), there must be some point Z in the open bounded set enclosed by

the curve F(∂UL
ε ) that is not contained in F(UL

ε ). Since F(UL
ε ) is compact, there is an open

ball B, centred at Z, which is in the open complementary of F(UL
ε ) and we take the ball with

maximal radius. On the boundary of the ball B there is, by the maximality assumption, some
point Z1 ∈ F(UL

ε ). Since F−1(Z1) = A1 ∈ U and F is a local diffeomorphism from U to W ,
we can find a small neighbourhood of A1 that is mapped by F onto a neighbourhood N of
Z1 = F(A1). However, then N would cover some points of B, contradicting the fact that by
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Figure 7.

Figure 8.

construction B was entirely contained in R
2 − F(Uε). The obtained contradiction shows that

F(Uε) is exactly the compact set surrounded by F(∂UL
ε ).

Step 1 is now justified by the combination of the proved facts. Indeed, if b0 � 0 is given,
we consider sets UL

ε with ε ↓ |b0| and L → ∞ to infer that (2.2) is a global diffeomorphism
from the domain below the horizontal line {(a, b0) : a ∈ R} to the domain below the trochoid
(or cycloid) obtained by setting b = b0 in (2.2).

Remark. At this point we would like to comment on the importance of the assumption b0 � 0:
for fixed b > 0 and t � 0, the image under (2.1) of the horizontal line {(a, b) : a ∈ R} is a
self-intersecting curve. Indeed, just like above, it is enough to analyse the case a ∈ [0, 2π/m]
with t = 0. If F1 is the resulting vector function of a, note that its vertical component is
increasing on [0, π/m], while the horizontal component is increasing on [0, 1

m
arccos(−e−mb)]

and decreasing on [ 1
m

arccos(−e−mb), π/m]. Since F1(0) = (0, b − emb/m), F1(π/m) =
(π/m, b+ emb/m) and the points F1(π/m−a), F1(π/m+a) for a ∈ [0, π/m] are symmetric
with respect to the line x = π/m, the trochoid for a ∈ [π/m, 2π/m] is obtained by reflecting
the graph of F1 in this line and we obtain the self-intersecting curve shown in figure 8. �
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Step 2. The equation of the profile of the free surface is given by the image under (2.1) of the
still water surface z = b0, b0 � 0:

x = a +
emb0

m
sinm

(
a +

√
g

m
t

)

z = b0 − emb0

m
cosm

(
a +

√
g

m
t

)
.

(2.3)

The boundary conditions (1.4) and (1.5) both hold.

The first part is contained in the considerations made throughout step 1. For the second
assertion, observe that (1.4) expresses the fact that a particle on the free water surface will stay
on it and this is already ensured. To prove the last part, note that the velocity of a particle with
parameters (a, b) is obtained by differentiating (2.1) with respect to time,

u(t, x(t), y, z(t)) =
√
g

m

(
emb cosm

(
a +

√
g

m
t

)
, 0, emb sinm

(
a +

√
g

m
t

))
(2.4)

of absolute value
√

g

m
emb → 0 as z → −∞ since z ∈ [b − emb/m, b + emb/m].

Step 3. The flow defined by (2.1) satisfies the equation of continuity.

As already pointed out, the equation of continuity expresses incompressibility. It will be
enough to show that the map


a +

emb

m
sinma

b − emb

m
cosma


 �→



a +

emb

m
sinm

(
a +

√
g

m
t

)

b − emb

m
cosm

(
a +

√
g

m
t

)



expressing the transformation of the initial state to the state at time t > 0, is area-preserving. To
show that the Jacobian of this transformation is 1, note that the Jacobians of the transformations
T0 and T , defined by

(
a

b

)
�→



a +

emb

m
sinma

b − emb

m
cosma




(
a

b

)
�→



a +

emb

m
sinm

(
a +

√
g

m
t

)

b − emb

m
cosm

(
a +

√
g

m
t

)



respectively, are both time independent and equal to (1 − e2mb). The map we are interested in
is precisely T ◦ T −1

0 and its area-preserving property is now plain.

Step 4. Associated with the flow (2.1) there is a unique hydrodynamical pressure P satisfying
Euler’s equations and the boundary condition (1.3).

The acceleration of a particular fluid particle is obtained by differentiating (2.1) twice with
respect to time,

Du

Dt
=
(

−gemb sinm

(
a +

√
g

m
t

)
, 0, gemb cosm

(
a +

√
g

m
t

))
so that the equations of motion (1.2) are

gemb sinm

(
a +

√
g

m
t

)
= ∂

∂x

(
P

ρ
+ gz

)

−gemb cosm

(
a +

√
g

m
t

)
= ∂

∂z

(
P

ρ
+ gz

)
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with the trivial y component eliminated. It appears to be more convenient to change variables
from (x, z) to (a, b). Taking into account (2.1), this gives

∂

∂a

(
P

ρ
+ gz

)
= gemb sinm

(
a +

√
g

m
t

)
∂

∂b

(
P

ρ
+ gz

)
= ge2mb − gemb cosm

(
a +

√
g

m
t

)
.

(2.5)

Expressing z from (2.1) and noting that the right-hand sides of both lines in (2.5) are the partial

derivatives of
[
g

2me2mb − g

m
emb cosm(a +

√
g

m
t)
]

with respect to a, b, we obtain that for some
constant c,

P = c − ρgb +
ρg

2m
e2mb. (2.6)

This means that the hydrodynamical pressure is constant for all particles for which b is constant,
irrespective of the value of a. In particular, the pressure has the same value for any given particle
as it moves about. If we take b = b0 � 0 as the still water surface, we obtain from (1.3) and
(2.6) the explicit determination of the pressure at any particle during the flow (2.1),

P = P0 − ρg(b − b0) +
ρg

2m
(e2mb − e2mb0).

This was the last step in the proof of the fact that Gerstner’s wave is an explicit solution to
the governing equations for waves on deep water. We complete the examination of Gerstner’s
wave by analysing the mean level z = k, that is, the level with respect to which the same amount
of water is elevated as depressed (see figure 9). Observe that, by definition,

∫
(z − k) dx = 0

if taken over a wavelength of the surface profile. A change of variable transforms this relation
to∫ 2π/m

0

(
b0 − k − emb0

m
cos

[
m

(
a +

√
g

m
t

)])(
1 + emb0 cos

[
m

(
a +

√
g

m
t

)])
da = 0

which gives k = b0 − e2mb0/(2m). Therefore, the mean level is below the level of the still
water by an amount e2mb0/(2m).

Figure 9.
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Finally, let us point out that the motion of the water body induced by the passage of
Gerstner’s wave is rotational: the vorticity curl u = ∇ ∧u (measuring the local spin or rotation
of a fluid element) is non-zero. Indeed, using the parametric representation of the location of
the water particles and of the velocity, we obtain

u1 dx + u3 dz =
(√

g

m
e2mb +

√
g

m
emb cosm

(
a +

√
g

m
t

))
da

+

√
g

m
emb sinm

(
a +

√
g

m
t

)
db

= d

(
1

m

√
g

m
emb sinm

(
a +

√
g

m
t

))
+

√
g

m
e2mb da.

Since this is not an exact differential we see that the motion is rotational. To be more precise,
let us fix an instant t and compute the value of the vorticity at a point (x0, z0) with parameters
(a0, b0), located in the interior of the fluid domain (the vorticity being continuous, if we obtain
its expression in the interior, we get it by a limiting process also for the boundary of the fluid
domain). Let C∗

r be the image of the circle Cr of radius r > 0, centred at (a0, b0) and oriented
clockwise, under the diffeomorphism (2.1). The diffeomorphism being orientation-preserving
(its Jacobian is positive),C∗

r will be a smooth closed curve, lying in a vertical plane and oriented
there in such a way that it leaves (x0, z0) always to its left by surrounding it. From Stokes’s
theorem we deduce that

n · curl u(x0, z0) = lim
r→0

1

µr

∫
C∗
r

u · dl

where µr is the area of the surface determined by C∗
r in the (x, z)-plane, and n = (0,−1, 0)

is the normal. Changing variables by passing to the parameters (a, b), we have∫
C∗
r

u · dl =
∫
Cr

d

(
1

m

√
g

m
emb sinm

(
a +

√
g

m
t

))
+

√
g

m
e2mb da.

Using the annihilation of an exact differential along a closed curve, we obtain∫
C∗
r

u · dl =
√
g

m

∫
Cr

e2mb da.

This can be expressed conveniently in polar coordinates b = b0 + r sin θ , a = a0 + r cos θ ,∫
Cr

e2mb da = −re2mb0

∫ 2π

0
e2mr sin θ sin θ dθ = −2mr2e2mb0

∫ 2π

0
e2mr sin θ cos2 θ dθ

after integration by parts. We obtain that

n · curl u(x0, z0) = lim
r→0

−2
√
gm e2mb0r2

µr

∫ 2π

0
e2mr sin θ cos2 θ dθ.

According to multivariable calculus, the parametrizing diffeomorphism changes the area
infinitesimally by a factor equal to the absolute value of the Jacobian, the latter being equal to
(1 − e2mb) at a point (a, b). In particular, limr→0

µr
πr2 = 1 − e2mb0 , so that

n · curl u(x0, z0) = −2
√
gm e2mb0

1 − e2mb0

as limr→0
∫ 2π

0 e2mr sin θ cos2 θ dθ = ∫ 2π
0 cos2 θ dθ = π . Since we deal with a two-dimensional

flow, one can easily see that curl u = (0, ω∗, 0) at any point. We infer that

curl u =
(

0,
2
√
gm e2mb0

1 − e2mb0
, 0

)
= −2

√
gm e2mb0

1 − e2mb0
n
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at a point parametrized by (a0, b0). The negative sign indicates that the vorticity is in the
opposite sense to the revolution of the particles in their circular orbits. Also, note that the
vorticity decreases rapidly as we descend into the water.

3. Discussion

Let us emphasize some properties of Gerstner’s wave and interpret them in the context of a
mathematical understanding of the huge complexity of water waves—they confirm predictions
of the linear theory3.

The free water surface is generally a smooth trochoid with the extreme form of a cycloid
with cusps upwards. These profiles are of wavelength λ = 2π/m and of period T = 2π/

√
gm,

as one can easily recognize from the parametric representation (2.3) of the surface wave: T is
the time required for two successive crests to pass a fixed point in space while the horizontal
distance between two successive crests is λ. Gerstner’s wave is a symmetric wave whose
profile—a trochoid or a cycloid—rises and falls exactly once per wavelength. The surface
wave is expressed mathematically in the form

h(t, x) = h

(
x +

√
g

m
t

)
the periodic function h being the wave profile. That is, Gerstner’s wave is a periodic
progressive wave propagating at constant speed without change in shape, with a profile
portraying accurately gravity waves that are observed in nature. The speed of propagation
of Gerstner’s wave is c = λ/T or

c =
√
gλ

2π
.

The previous relation is the dispersion relation for gravity waves on deep water. It shows
that waves of different lengths travel at different speeds so that a group of waves of different
lengths starting together would spread out. The dispersion relation is obtained (cf [3]) within
the framework of the formal linear approximation to the governing equations, but in the
case of Gerstner’s wave the relation is derived rigorously as a byproduct of (2.1). This
agreement supports the contention that the formal linear theory gives a fair representation
of the propagation of water waves.

There is another fact pertinent to the present discussion. From the analysis in section 2 it is
clear that any water particle describes a circle as Gerstner’s wave passes, the radius of the circle
getting smaller with increasing depth—a pattern convincingly verified by actual photographs
(see [5]). Moreover, a glance at (2.4) shows that the speed |u| of a particle at depth larger than
half of the wavelength, b = b0 − λ/2, is smaller than the speed at the surface by a factor of
at least eπ > 23. Indeed, by (2.1), the square value of the speed of a particle parametrized by
(a, b) is (

∂x

∂t

)2

+

(
∂z

∂t

)2

= g

m
e2mb.

The same conclusion holds for the size of the circular orbits of the particles as we can easily
infer from (2.1): the circular path of a particle parametrized by (a, b) is of radius emb/m.

3 This is especially interesting because Gerstner’s wave is a solution to the nonlinear governing equations. The effects
of nonlinearity are recognizable in that they distort its shape away from the sinusoidal waveforms z = A sin(lx−ωt)

encountered in linear water wave theory (see [2]), making crests narrower (up to the occurrence of peaks) and troughs
flatter.
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Therefore, at a depth larger than half the wavelength, the motion is less than 5% of its surface
value. Gerstner’s wave can thus be used to support the conclusion reached by formal linear
approximation (see [2, 3]) that at depths below half-wavelength there is practically no motion.

We conclude that, in spite of its special character, Gerstner’s wave presents features of
general interest in that it assesses the value of basic conclusions about deep water waves,
conclusions which, despite being obtained by a formal linearization approach (for which a
rigorous justification is not available), are in good agreement with experiments. In addition,
there is one aspect to which attention should particularly be drawn: the particular profile with
upward cusps. It is a (perhaps perplexing) peculiarity to have an exact solution with peaks.
Moreover, this solution describes the observed symmetrical peaking of the crests of water
waves—according to [7] the occurrence of the intriguing peaking phenomenon in water waves
is lost in the classical approximations to the governing equations.
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